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Abstract
The spectral decomposition is given for the N -qubit Bell operators with two
observables per qubit. It is found that the eigenstates (when non-degenerate)
areN -qubit GHZ states even for those operators that do not allow the maximal
violation of the corresponding inequality. We present two applications of this
analysis. In particular, we discuss the existence of pure entangled states that do
not violate the Mermin–Klyshko inequality for N � 3.

PACS numbers: 03.65.Ud, 03.65.-w

1. Introduction

There is much literature available concerning Bell’s inequalities. For the sake of this
introduction, we briefly recall some well known ideas, using the Clauser–Horne–Shimony–
Holt (CHSH) inequality [1]. For each choice of four numbers a1, a

′
1, a2, a

′
2 ∈ {−1,+1}, the

quantity S = 1
2 (a2 + a′

2)a1 + 1
2 (a2 − a′

2)a
′
1 can take only the values +1 or −1. Therefore, if

the four numbers are considered as realization of random variables, the expectation of S will
certainly depend on the distribution of the variables but must also satisfy |E(S)| � 1. These
are ‘trivial mathematics’. But if one turns to quantum mechanics (QM), then this inequality
can be violated. Indeed, consider that a is +1 if, as a result of a measurement, a spin is found
along the direction +a, and a is −1 if the spin is found along the direction −a. This is achieved
by replacing a by the operator a ·σ ≡ σa . Using this prescription for a1, a′

1, a2 and a′
2 we find

that S is the expectation value of the ‘Bell operator’2

B2(a1,a
′
1,a2,a

′
2) = 1

2 (σa2 + σa′
2
)⊗ σa1 + 1

2 (σa2 − σa′
2
)⊗ σa′

1
(1)

where a1,a
′
1,a2,a

′
2 are unit vectors that will be referred to as the ‘parameters’ of the Bell

operator. It is well known that for some choices of the parameters the highest eigenvalue of
B2 can be higher than 1: there exist some states |
〉 that violate the inequality |〈B2〉
 | =
1 Corresponding author.
2 Usually, the CHSH operator is written without the factor 1

2 in front of it, so that the Bell’s inequality is S � 2.
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|E(S)| � 1. ‘Trivial mathematics’ fail whenever [σak , σa′
k
] �= 0, that is whenever ak �= ±a′

k:
in this case the ‘random variables’ ak and a′

k cannot simultaneously have a precise value.
The first Bell’s inequalities were derived for two two-level systems (hereafter referred to

as ‘qubits’). Generalizations of the Bell’s inequalities have been proposed along the following
lines: (i) bipartite inequalities for two n-level quantum systems [2]; (ii) bipartite inequalities
using more than two parameters per system a1, a′

1, a′′
1 , . . . [3]; (iii) multipartite inequalities,

that is, inequalities involving more than two quantum systems [4–6].
In this paper, we consider inequalities involving an arbitrary number of qubits using two

observables per qubit (the observables are obviously dichotomic). This family of inequalities
has been studied in great detail independently by Werner and Wolf [7] and by Zukowski
and Brukner [8]. Our present contribution consists of exhibiting explicitly the spectral
decomposition of Bell’s operators (section 2). Section 3 presents applications of this result.

2. Spectral decomposition of Bell operators

2.1. Inequalities for two observables

Consider a quantum system composed of n qubits, that is a system described by the Hilbert
space (C2)⊗n. For each qubit k, we define two observables Ak(0) = σak and Ak(1) = σa′

k
,

with ak and a′
k being two vectors on the unit sphere. The set {a1,a

′
1, . . .an,a

′
n} of the 2n

unit vectors is written a. Up to normalization, any n-qubit Bell inequality3 can be written as
〈Bn(a)〉 � 1 for a given Bell operator Bn. The form of the Bell operator is a polynomial

Bn(a) =
∑

s∈{0,1}n
β(s)

n⊗
k=1

Ak(sk). (2)

The coefficients β(s) are rather arbitrary, provided that 〈Bn〉 � 1 is satisfied for all product
states.

Of course, not every polynomial of the form (2) defines a good inequality; in the worst
cases, for example, when the polynomial is simply σa1 ⊗ · · · ⊗ σan , one will find 〈Bn〉 � 1
for all states. The complete classification of all inequalities is due to Werner and Wolf [7]. A
special role is played by the Mermin–Klyshko (MK) inequalities [4–6], whose corresponding
Bell operator is defined recursively as

Bn(a) ≡ Bn = 1
2 (σan + σa′

n
)⊗ Bn−1 + 1

2 (σan − σa′
n
)⊗ B ′

n−1 (3)

where B ′
n is obtained from Bn by exchanging ak and a′

k . In particular, B2 is given by the
CHSH inequality; B3 is the operator that corresponds to the so-called Mermin’s inequality [4].
For MK inequalities, the violation allowed by QM is 〈Bn〉 = 2(n−1)/2; no other inequality with
two observables per qubit can reach such a violation [7]. More results on these operators are
given in appendices A and B.

2.2. Spectral decomposition: statement of the theorem

We want to characterize the eigenvectors and eigenvalues of the Bell operator Bn defined
in (2), for a given set of 2n unit vectors a. For this purpose, we can suppose without any loss
of generality that all the unit vectors in a lie in the (x, y) plane; physically, this amounts to
saying that the axes x, y, z can be defined independently for each qubit. We will show the
following theorem.

3 From now onwards, expressions like ‘all inequalities’ mean ‘all inequalities involving two observables per qubit’.
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Theorem 1. Let Bn given by (2), with ak = cosαkex + sin αkey and a′
k = cosα′

kex + sin α′
key

for all k = 1, . . . , n. Let |0〉, resp. |1〉, be the eigenvector of σz for the eigenvalue +1, resp.
−1. Finally, let � = (ω1, . . . , ωn) ∈ {0, 1}n be a configuration of n zeros or ones, and
�̄ = (ω̄1, . . . , ω̄n) with ω̄k = 1 − ωk the complementary configuration. Then:

(1) The 2n n-qubit GHZ states, labelled by the configurations �, defined by

|
�(θ�)〉 = 1√
2
(eiθ� |�〉 + |�̄〉) (4)

form a basis of eigenvectors of Bn for some θ� = θ�(a).
(2) The parameter θ� = θ�(a) and the eigenvalue λ� = λ�(a) are calculated from a complex

number f�(a):

if arg f� ∈ [0, π [ then: θ� = − arg f� − π λ� = −|f�|
if arg f� ∈ [π, 2π [ then: θ� = − arg f� λ� = |f�|. (5)

The complex number f�(a) is obtained as follows: take Bn, and for all k = 1, . . . , n
replace the operator σak by the complex number eiαk if ωk = 0 in �, or by the complex
number e−iαk if ωk = 1 in �; and the analogue replacement for σa′

k
.

About statement 1: it was noticed in [7] (V, D) that GHZ states are the states that maximally
violate any inequality. This is an immediate corollary of statement 1, since for any matrix M
it holds that maxv 〈v|M|v〉/〈v|v〉 is the maximal eigenvalue, obtained if and only if v is the
eigenvector associated with that eigenvalue.

About statement 2: the definition of f�(a) may seem cumbersome, but a single example
will clarify it. Take the CHSH operator to be given by (1). Then f00 = 1

2 (e
iα2 + eiα′

2) eiα1 +
1
2 (e

iα2 − eiα′
2) eiα′

1 ; f01 is obtained by replacing eiα2 and eiα′
2 by their conjugates; f10 = f ∗

01 and
f11 = f ∗

00, with z∗ the conjugate of z.
The proof of the theorem is given in two steps. In the first step, we take advantage of a

remarkable symmetry of the Bell operators to guess the basis (4); in the second step, direct
calculation gives the explicit results (5).

2.3. First step

For a given rotation matrixR ∈ SO(3), it is well known that one can findU ∈ SU(2) such that
U a·σ U−1 = (Ra)·σ . In particular, one can findU such thatUσaU−1 = σ−a = −σa . Since
we are considering that all the parameters a lie in the plane (x, y), the rotation that brings a on
−a is a rotation by π around the z-axis, so that the corresponding unitary operation is U � σz
(equality up to an arbitrary phase). We introduce the notation U [k] = 11 ⊗ · · · ⊗ σz ⊗ · · · ⊗ 11,
where the rotation is applied on the kth qubit. Note that [U [k], U [l]] = 0 for all k and l. Since
Bn is a sum of terms like σa1σa′

2
. . . σan , we have manifestly:

U [k] Bn U [k]−1 = −Bn ∀k ∈ {1, . . . , n} (6)

U [k]U [l] Bn U [k]−1U [l]−1 = Bn ∀ k, l ∈ {1, . . . , n}. (7)

These conditions depend critically on the assumption that the Bell operator is dichotomic: if we
had three or more vectors for a qubit, we could not ensure that they lie in a plane. Condition (6)
says that Bn and −Bn are linked by a unitary operation, hence the following:

Lemma 1. If λ is an eigenvalue of Bn associated to |ψ〉, then −λ is also an eigenvalue of Bn.
The vector U [k]|ψ〉 is eigenvector of Bn for the eigenvalue −λ, for all k.
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The symmetries (6) and (7) of Bn suggest that one should look for vectors satisfying

U [k]|
〉 ⊥ |
〉 ∀k � n (8)

U [k]U [l]|
〉 = eiγkl |
〉 ∀k, l � n (9)

as good candidates for the eigenstates of Bn; they would be the unique candidates if none of
the eigenvalues of Bn were degenerate, but this is generally not the case (see appendix B). Let
|0〉 (resp. |1〉) be the eigenstate of σz for the eigenvalue +1 (resp. −1). We decompose the
n-qubit state |
〉 on the basis of the product states of |0〉s and |1〉s: |
〉 = ∑

�∈{0,1}n c�|�〉.
We use condition (9) first:

U [k]U [l]|
〉 =
∑
�

(−1)ωk+ωl c�|�〉 (9)= eiγkl
∑
�

c�|�〉 ∀k, l

⇐⇒ [eiπ(ωk+ωl) − eiγkl ] c� = 0

∀� ∈ {0, 1}n and ∀ k, l � n. (10)

Now suppose c� �= 0: this implies, modulo 2π :

γkl = π(ωk + ωl) =
{

0 if ωk = ωl

π if ωk �= ωl .
(11)

That is, the choice of� for which c� �= 0 determines completely the sequence of the γkl . Now,
it is evident from (11) that only �̄ gives exactly the same sequence as �. Thus (10) means
that once we have chosen� for which c� �= 0, then c�′ = 0 for all�′ �= �, �̄. We turn now
to condition (8), that, with U [k]|
〉 = ∑

�(−1)ωk c�|�〉, reads

〈
|U [k]
〉 =
∑
�

(−1)ωk |c�|2 (8)= 0 ∀k. (12)

But we have proved just above that the states we are interested in are such that only c� and c�̄
can be different from zero. Thus (12) becomes (−1)ωk (|c�|2 −|c�̄|2) = 0, that is |c�| = |c�̄|.
We have then proved that a n-qubit state satisfies both (8) and (9) if and only if it is of the
form (4) for a given � ∈ {0, 1}n. Thus we have 2n states, each labelled by one configuration
�. The orthogonality requirement 〈
�(θ�)|
�′(θ�′)〉 = δ�,�′ is trivial but for �′ = �̄: in
this case, we must require θ�̄ = π − θ�. This concludes the first step of the proof. Just two
remarks before turning to the second step:

Remark 1. The state built on �̄ is entirely determined by the state built on � through

|
�̄(θ�̄)〉 � |
�(θ� + π)〉 � U [k]|
�(θ�)〉. (13)

The first equality follows from the requirement θ�̄ = π − θ� by extracting θ�̄ as a global
phase. As for the second equality:

U [k]|
�(θ�)〉 = 1√
2
(eiθ�(−1)ωk |�〉 + (−1)ω̄k |�̄〉)

= eiθ�(−1)ωk√
2

(|�〉 − e−iθ� |�̄〉) � 1√
2
(ei(π−θ�)|�̄〉 + |�〉).

Thus, another recipe to build a basis of states of the form (4) is the following: (i) for all� such
as (say) ω1 = 0, choose θ� and build the state |
(�, θ�)〉; (ii) apply U [k] to each of these
states (or change θ� to θ� + π ) to complete the set.

Remark 2. The two states built from �0 = (0, . . . , 0), namely 1√
2
(eiθ |0 . . . 0〉 ± |1 . . . 1〉),

are the only ones for which the γkl are independent of k and l; and are actually 0, with our
choice of phases U [k] = σz[k].
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2.4. Second step

We must show that the states of the form (4) form a basis of eigenstates of Bn(a), that is

Bn |
�(θ�)〉 = λ� |
�(θ�)〉 (14)

with θ� = θ�(a) and λ� = λ�(a). Actually, we have to solve (14) only for the state built on
�0 = (0, . . . , 0)

|
�0(θ�0)〉 ≡ |
(θ)〉 = 1√
2
(eiθ |0 . . . 0〉 + |1 . . . 1〉).

This is so, because one can exchange |0〉 and |1〉 by applying a unitary operation, here σx .
Therefore by application of σx to the suitable qubits we can always transform any |
�〉 into
|
�0〉. Once we have the results for �0, the results for � follow by taking the qubits k for
which ωk = 1 in�, and replacing σak by σxσakσx , that is, replacing (ak)y = sin αk by − sin αk ,
and the same for σa′

k
. So the eigenvalue problem is reduced to the problem of finding λ and θ

satisfying

Bn(eiθ |0 . . . 0〉 + |1 . . . 1〉) = λ (eiθ |0 . . . 0〉 + |1 . . . 1〉). (15)

Consider now one of the terms in (2), say σa1 ⊗ · · · ⊗ σan : a standard calculation gives

σa1 ⊗ · · · ⊗ σan(e
iθ |0 . . . 0〉 + |1 . . . 1〉) = eiθ

( ∏
k

eiαk

)
|1 . . . 1〉 +

( ∏
k

e−iαk

)
|0 . . . 0〉.

Consequently the eigenvalue problem (15) gives

Bn |
(θ)〉 = 1√
2
(eiθf |1 . . . 1〉 + f ∗|0 . . . 0〉) = λ|
(θ)〉 ⇐⇒ eiθf = λ (16)

with f (a) = (
∑

s β(s)
∏
k eiαk(sk)); for ease of notation, we write αk(0) for αk and αk(1) for

α′
k . The proof of theorem 1 is virtually concluded. The solution (5) follows by settling

a matter of convention, since condition (16) can be written as |f |ei(θ+arg(f )) = λ or as
|f |ei(θ+arg(f )+π) = −λ, in other words, a convention on θ fixes the sign of λ, this is nothing but
the manifestation of (13). We choose as a convention that θ� ∈ [0, π [ for all�; this convention
is consistent with θ�̄ = π − θ�.

3. Applications and perspectives

3.1. On some non-maximally entangled states

In this section we study the violation of MK inequalities for a family of N -qubit states that
clearly exhibit N -qubit entanglement. These states are

|ψN(φ)〉 = cosφ |0N 〉 + sin φ |1N 〉 (17)

where we adopt the notation |0N 〉 = |0 . . . 0〉; by convention, we choose cosφ � sin φ � 0
i.e. φ ∈ [0, π4 ].

In the case where N = 2, using Schmidt’s decomposition every pure state can be written
in the form |ψ(φ)〉 = cosφ|00〉 + sin φ|11〉. It is well known that the CHSH inequality is
violated by all pure entangled states [9]; in fact, using Horodeckis’ theorem [10] one can
calculate explicitly that S2 = maxa〈B2(a)〉ψ(φ) =

√
1 + sin2 2φ, which is bigger than 1 unless

φ = 0. It is interesting to re-derive this result starting from the spectral decomposition of B2.
Consider the Bell states: |'±

z 〉 = 1√
2
(|00〉± |11〉), |
±

z 〉 = 1√
2
(|01〉± |10〉). |ψ(φ)〉 is a linear

combination of |'+
z 〉 and |'−

z 〉. If we take the unit vectors a in the (x, y) plane, then |'+
z 〉
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and |'−
z 〉 must be associated to opposite eigenvalues. But |'+

z 〉 = |'+
x〉 and |'+

z 〉 = |
+
x 〉:

therefore, by taking the unitary vectors in the (y, z) plane, we can construct B2 as

B2 = λ1 (P'+
x
− P'−

x
) + λ2 (P
+

x
− P
−

x
) = λ1 (P'+

z
− P
+

z
) + λ2 (P'−

z
− P
−

z
).

This way, the two vectors that have a non-zero overlap with |ψ(φ)〉 are associated to the positive
eigenvalues. The calculation of S2 is not difficult, using the fact that λ2

1 +λ2
2 = 2 (see lemma 3

of appendix A) and the standard maximization

max
χ
(A cosχ + B sin χ) =

√
A2 + B2. (18)

We find indeed Horodecki’s value. Thus, to obtain this maximal violation of CHSH we took
advantage of the possibility of choosing the Bell states that are orthogonal to |ψ(φ)〉 as the
states associated to the negative eigenvalues of B2. Now, this is precisely a characteristic of
two-qubit maximally entangled states that does not generalize to three or more qubits. In fact,
it is well known and easily verified that N -qubit GHZ states take the form 1√

2
(|0N 〉 + |1N 〉)

only in one basis (up to trivial relabelling). Therefore, for N > 2, if we build BN
such that |GHZ+〉 = 1√

2
(|0N 〉 + |1N 〉) is associated to the eigenvalue λ, then necessarily

|GHZ−〉 = 1√
2
(|0N 〉 − |1N 〉) will be associated to −λ.

We now consider SN = maxa〈BN(a)〉ψN(φ), with BN a MK Bell operator, for arbitrary
N � 3. Using 〈1N |BN |1N 〉 = (−1)N 〈0N |BN |0N 〉 we have

〈BN(a)〉ψN(φ) = fN(φ) 〈0N |BN(a)|0N 〉 + sin 2φ Re (〈1N |BN(a)|0N 〉) (19)

where fN(φ) = [cos2 φ + (−1)N sin2 φ], that is 1 for N even and cos 2φ for N odd. The
maximization of (19) over all possible choices of a is not evident for the following reason.
We know that there are sets a that saturate the bound Re (〈1N |BN |0N 〉) = 2

N−1
2 ; but for these

we find 〈0N |BN |0N 〉 = 0. Similarly, the sets a that saturate the bound 〈0N |BN |0N 〉 = 1 give
Re (〈1N |BN |0N 〉) = 0. Let us try to guess the maximum of (19) using the insight provided
by the spectral decomposition of BN discussed in section 2 above. A natural first guess
would be BN = 2

N−1
2 (PGHZ+ − PGHZ−), that is Re (〈1N |BN |0N 〉) = 2

N−1
2 . This choice gives

S
(g)

N (φ) = 2
N−1

2 sin 2φ. Numerical evidence suggests that this is indeed the maximum of (19)
whenever SN(φ) � 1. This provides a criterion for the violation of the MK inequalities:

SN(φ) > 1 ⇐⇒ sin 2φ > 2− N−1
2

(
N = 3, 4, 5 : numerically verified
N > 5 : conjectured

)
. (20)

Thus there exist pure entangled states that do not violate the MK inequality. Let us define φN
as the value of φ at which |ψN(φ)〉 ceases to violate the MK inequality: we have φ2 = 0, and
sin 2φN = 2− N−1

2 for N � 3, within the validity of (20). There is a clear discontinuity in the
behaviour of φN between N = 2 and 3, as illustrated in figure 1: φN jumps from 0 for N = 2
to π

12 for N = 3, then starts decreasing again for higher N . This analysis suggests that the
MK inequalities, and more generally the family of Bell’s inequalities with two observables per
qubit, may not be the ‘natural’ generalization of the CHSH inequality to more than two qubits.
Whether a more suitable inequality exists is an open question.

To conclude this section, let us briefly come back to the problem of maximizing (19). The
guess S(g)N (φ) = 2

N−1
2 sin 2φ cannot be correct for all φ: in fact, in the limit of small φ values,

|ψN(φ)〉 approaches |0N 〉 and therefore S(φ) should converge to 1. To avoid this problem, we
modify slightly our guess to

S
(g)

N (φ) = max[2
N−1

2 sin 2φ, fN(φ)]. (21)

Obviously SN � S
(g)

N , since we know that S(g)N can be reached. Numerical estimates for
N = 3, 4, 5 prove that this guess is extremely good. Actually, for N = 4, 5 we found
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Figure 1. Ranges of φ for which |ψN(φ)〉 violates (brighter) and does not violate (darker) the MK
inequality. For N > 5, the result is conjectured, see (20).

SN(φ) = S
(g)

N (φ) for all φ to within the accuracy of the calculation; for N = 3, the same
holds for all φ but a small range of values around φ̄ defined by 2 sin 2φ̄ = cos 2φ̄ (the maximal
difference is S3 − S

(g)

3 ≈ 0.002).

3.2. Bounds on the violation of Mermin’s inequality

As a second application, we show how the knowledge of the spectral decomposition of Bell
operators provides bounds to estimate the violation of Mermin’s inequality for any three-qubit
state ρ. Some results are similar to those found independently by Zukowski and Brukner [8].

We consider a three-qubit Bell operator B3(a). According to theorem 1 one can always
find a basis such that its eight eigenstates are |
1,8〉 = |
000(0, π)〉 = 1√

2
(|000〉 ± |111〉),

|
2,7〉 = |
001(0, π)〉 = 1√
2
(|001〉 ± |110〉), |
3,6〉 = |
010(0, π)〉 = 1√

2
(|010〉 ± |101〉),

|
4,5〉 = |
011(0, π)〉 = 1√
2
(|011〉±|100〉). Note that the four angles θ� that are unconstrained

can be chosen to be 0 without loss of generality, since this amounts to a redefinition of the
global phases of |0〉A, |0〉B etc. Consequently in this basis

B3 = λ1 (P1 − P8) + λ2 (P2 − P7) + λ3 (P3 − P6) + λ4 (P4 − P5)

= µ++++σxxx + µ−++−σxyy + µ−+−+σyxy + µ−−++σyyx

with σxxx = σx ⊗ σx ⊗ σx etc, and with µs1s2s3s4 = 1
4 (s1λ1 + s2λ2 + s3λ3 + s4λ4). For a given

three-qubit state ρ

Tr(B3 ρ) = µ++++txxx + µ−++−txyy + µ−+−+tyxy + µ−−++tyyx (22)

with the standard notation txxx = Tr(ρ σxxx) etc. Our final purpose is to estimate Sρ =
maxa Tr(B3 ρ) for any ρ. If ρ is given, one must find both the good eigenvectors and the
good eigenvalues of B3. The optimization of the eigenvalues is performed by varying the
parameters µ; we discuss it in the next paragraph for the Mermin’s operator B3. To optimize
the eigenvectors means to define the axes x and y for each qubit. Note that when the basis
of eigenvectors is optimized only four number tijk will come into play, thus sharpening the
condition obtained by Zukowski and Brukner [8] that involved eight of these numbers.

While the system of eigenvectors is the same for all Bell operators of the form (2), the
eigenvalues and their properties obviously depend on the operator that is considered. We
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Table 1. Sρ and the bounds S+
ρ and S−

ρ for some three-qubit states (states not-normalized).

State S−
ρ Sρ S+

ρ

|W 〉 = |011〉 + |101〉 + |110〉 1.516 1.523 1.527

cos
π

5
|000〉 + sin

π

5
|W 〉 1.669 1.669 1.68

cos2 π

5
|000〉 + cos

π

5
|001〉 + sin

π

5
|111〉 1.425 1.431 1.431

|0〉(|00〉 + |11〉) 1
√

2
√

2

restrict our discussion to the Mermin operator B3 given by (3). It can then be shown that the
eigenvalues must satisfy

Tr(B2
3 ) = 8 (23)

(see lemma 3 in appendix A). This leads to µ2
++++ + µ2

−++− + µ2
−+−+ + µ2

−−++ = 1. Therefore,
we can let µ++++ = cosα cosβ, µ−++− = cosα sin β, µ−+−+ = sin α cos γ and µ−−++ =
sin α cos γ , and maximize over α, β and γ . By using thrice the maximization (18) we find

Sρ � S+
ρ = max

{x,y}

√
t2xxx + t2xyy + t2yxy + t2yyx. (24)

This bound would in fact be exact if there were no constraint on the eigenvalues other
than (23). However, starting from the eigenvalues as they are given in statement 2 of theorem 1,
one finds by inspection that the eigenvalues are bound to fulfil some other conditions, like
(λ2

3 + λ2
1 − 2)(λ2

3 + λ2
4 − 2)/(λ2

3 + λ2
2 − 2) = 2 sin2(α1 − α′

1). To see that such a condition is
indeed an additional constraint, we let λ2 = λ3 = 1, which is of course a possible choice. The
rhs is bounded by 2, thus for the lhs not to diverge we must also have (say) λ4 = 1; but then
the condition (23) forces λ1 = 1 too. In conclusion, if two eigenvalues are equal to 1, all the
eigenvalues must be equal to 1.

Since such constraints are not easy to handle, it is interesting to provide a lower bound on
Sρ . A non-trivial one is obtained by simply choosing one possible realization of the eigenvalues,
namely λ1 = ±2, which due to (23) implies λ2 = λ3 = λ4 = 0. This gives

Sρ � S−
ρ = 1

2 max
{x,y}

|txxx − txyy − tyxy − tyyx |. (25)

In most cases, we still have to rely on a computer programme to calculate the bounds (24)
and (25). For these bounds, the optimization bears on nine parameters (for each qubit, two
parameters define the (x, y) plane and a third one fixes the axes in the plane); while a direct
optimization of 〈B3〉 bears on 12 parameters (two unit vectors per qubit).

Let us conclude by a discussion of the quality of the bounds (24) and (25) based on some
examples. Consider first the family of states |ψ3(φ)〉 (17). From φ = π

4 down to φ ≈ π
10 we

find S− = S = S+ = 2 sin 2φ. For smaller values of φ: (i) S− = max(2 sin 2φ, cos 2φ);
that is, S− corresponds to S(g)3 defined in (21). (ii) As we discussed earlier, the exact value
S essentially follows S−, but for small deviations. (iii) The upper bound S+ increases again,
from S+( π10 ) ≈ 1.175 up to S+(0) = √

2. Thus this bound turns out to be too rough in the
region φ � π

12 , where |ψ3(φ)〉 ceases to violate Mermin’s inequality.
In table 1 we give Sρ and the bounds S+

ρ and S−
ρ for some other states. All the possible

cases S− = S < S+, S− < S = S+ and S− < S < S+ are present. On all these examples, we
see that at least one bound is very close, if not identical, to the exact value.
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4. Conclusion

Bell’s inequalities for systems of more than two qubits are the object of renewed interest,
motivated by the fact that entanglement between more than two quantum systems is becoming
experimentally feasible. A link between Bell’s inequalities and the security of quantum
communication protocols has also been stressed recently [11].

Here we focused on inequalities obtained by measuring two observables per qubit, and we
gave the spectral decomposition of the corresponding operators. With these tools, we studied
the violation of MK inequalities for some states that exhibitN -qubit entanglement. We proved
numerically forN = 3, 4, 5, and we conjectured for allN , that there exist pure entangled states
that do not violate these inequalities.

The authors acknowledge financial support from the Swiss FNRS and the Swiss OFES
within the European project EQUIP (IST-1999-11053).

5. Appendix A. Relationships between Bn and B′
n

We derive in this appendix some properties of the MK operators Bn and B ′
n that were not

discussed in previous publications [5,6]. Lemma 2 was demonstrated independently and with
different mathematical tools in [12].

Lemma 2. B2
n = B ′

n
2 for all n.

Proof. From (3) we have

B2
n = 1

2
(1 + an · a′

n)11 ⊗ B2
n−1 +

1

2
(1 − an · a′

n)11 ⊗ B ′2
n−1 − i

2
σan∧a′

n
⊗ [
Bn−1, B

′
n−1

]
.

(26)

B ′
n

2 is obtained by exchanging the primed with the non-primed objects. Therefore

B2
n − B ′

n

2 = an · a′
n (B

2
n−1 − B ′2

n−1) ∝ (B2
2 − B ′

2
2
) = 0

since it can be calculated explicitly that B2
2 = B ′

2
2 = 11 + σa2∧a′

2
⊗ σa1∧a′

1
. �

Lemma 3. The explicit expressions for B2
n and for the commutator

[
Bn, B

′
n

]
are given

respectively by (29) and (30). The anticommutator is {Bn, B ′
n} = 2(an ·a′

n) . . . (a1 ·a′
1) 11. As

a corollary, note that Tr(B2
n) = 2n.

Proof. Lemma 2 allows us to rewrite (26) as

B2
n = 11 ⊗ B2

n−1 − i

2
σan∧a′

n
⊗ [
Bn−1, B

′
n−1

]
. (27)

Another standard calculation from (3) leads to[
Bn, B

′
n

] = 11 ⊗ [
Bn−1, B

′
n−1

]
+ 2iσan∧a′

n
⊗ B2

n−1. (28)

The structure of these two equations can be best seen by introducing the notations B2
n ≡ Pn,[

Bn, B
′
n

] ≡ 2iQn and σan∧a′
n
≡ 4n. We have then

Pn = 11 ⊗ Pn−1 +4n ⊗Qn−1

Qn = 11 ⊗Qn−1 +4n ⊗ Pn−1.

The recursive solution is a matter of patience. UsingP2 = 11+42⊗41 andQ2 = 11⊗41+42⊗11
we find

B2
n = B ′

n

2 = 112n +
∑
i<j

σai∧a′
i
σaj∧a′

j
+

∑
i<j<k<l

σai∧a′
i
σaj∧a′

j
σak∧a′

k
σal∧a′

l
+ · · · (29)

[
Bn, B

′
n

] = 2i

( ∑
i

σai∧a′
i

+
∑
i<j<k

σai∧a′
i
σaj∧a′

j
σak∧a′

k
+ · · ·

)
(30)
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where the dots indicate the sums over all products of an even, resp. an odd, number of σai∧a′
i
.

Finally, the anticommutator is also found through a direct calculation from (3):

{Bn, B ′
n} = 1

4 (2(11 + {σan, σa′
n
} ⊗ {Bn−1, B

′
n−1})− 2(11 − {σan, σa′

n
} ⊗ {Bn−1, B

′
n−1})

+ {σan + σa′
n
, σan − σa′

n
} ⊗ (B ′

n−1
2 − B2

n−1)︸ ︷︷ ︸
=0

)

= 1
2 {σan, σa′

n
} ⊗ {Bn−1, B

′
n−1} = (an · a′

n)11 ⊗ {Bn−1, B
′
n−1}.

The conclusion follows from {B2, B
′
2} = 2(a2 · a′

2)(a1 · a′
1) 114. �

6. Appendix B. Some results about the maximal eigenvalue

In the main text we exhibited a set of eigenvectors ofBn that have a remarkable symmetry. But
this set would lose much of this interesting feature if all eigenvalues were degenerate. Here
we show that at least in one case (which is an interesting one) we can be sure that there are
non-degenerate eigenvalues.

Let us first sort the eigenvalues of Bn into decreasing order: λ1 � · · · � λ2n . By virtue of
lemma 1, λk = −λ2n−k+1. In particular, Tr(B2

n) = 2(λ2
1 + λ2

2 + · · · + λ2
2n−1). Alternatively, we

noticed in lemma 3 that Tr(B2
n) = 2n, hence

λ2
1 + λ2

2 + · · · + λ2
2n−1 = 2n−1. (31)

In particular, if λ1 = 2
n−1

2 , then all the other eigenvalues (except of course −λ1) are zero. In
general, λ1 � 1, where the equality holds only in the ‘classical’ case λ1 = · · · = λ2n−1 =
−λ2n−1+1 = · · · = −λ2n = 1. Equality (31) implies

λ2
1 + λ2

2 � 2n−1 (32)

which leads to the following lemma.

Lemma 4. let λ1 and λ2 be the two greatest eigenvalues of Bn. If λ1 > 2
n
2 −1, then it is

non-degenerate, and moreover λ2 < 2
n
2 −1.

Now, if ρ is a n-qubit state exhibiting m-party entanglement, m � n, it can be shown that
〈Bn〉ρ � 2(m−1)/2 [6, 12]. Thus λ1 > 2

n
2 −1 for Bn means that we have a n-qubit violation. So

our last lemma reads: if the parameters a of Bn are such that a n-qubit violation is possible,
the maximal eigenvalue of Bn is non-degenerate. Actually we can prove even more as can be
seen from the next lemma.

Lemma 5. If λ1 > 2
n
2 −1, one cannot find two orthogonal states that both satisfy the condition

〈Bn〉ψ > 2
n
2 −1. (33)

Due to lemma 1, the same holds for the condition 〈Bn〉ψ < −2
n
2 −1.

To prove this lemma, we determine the necessary conditions for a state |ψ〉 to satisfy (33). Let
us decompose |ψ〉 on the basis of the eigenvectors of Bn: |ψ〉 = ∑2n

k=1
√
pi |
i〉 where |
i〉

is an eigenvector of Bn for the eigenvalue λi . With these notations

〈ψ |Bn|ψ〉 =
2n∑
i=1

pi λi � p1λ1 + (1 − p1)λ2.

Therefore if p1λ1 + (1 −p1)λ2 � 2n/2−1, requirement (33) cannot be satisfied. In other terms,
a necessary condition for (33) to be satisfied is

p1 >
2
n
2 −1 − λ2

λ1 − λ2
= 1 − µ2

µ1 − µ2
≡ p̄ (34)
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(we introduced the notation 2n/2−1µi = λi in order to show that p̄ does not depend explicitly
on the number of qubits n). It can be shown using (32) that 1

2 < p̄ � 1. The limiting case
p̄ = 1 corresponds to λ1 = 2n/2−1, in which case of course (33) cannot be satisfied. The
roughest criterion that we can state is therefore the following: given Bn such that λ1 > 2n/2−1,
a state |ψ〉 cannot satisfy (33) if p1 = |〈
1|ψ〉|2 � 1

2 . This criterion is enough to conclude
the proof of lemma 5.
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